Research Paper:
Hydrocephalus in Patients With Head Trauma: A Series of 14 Patients

Shahrokh Yousefzadeh-Chabok1, Ehsan Kazemnejad-Leili2, Leila Kouchakinejad-Eramsadati1, Maria Moghtader3, Nasim Abolfathi4, Zoheir Reihanian5, Marieh Hosseinpour1*

1. Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
2. Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
3. Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
4. Department of Nursing, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
5. Department of Neurosurgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran

* Corresponding Author:
Marieh Hosseinpour, MSc.
Address: Guilan Road Trauma Research Center, Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
Tel: +98 (13) 33368773
E-mail: m_hosseinpour88@yahoo.com

Article info:
Received: 30 April 2017
Last Revised: 3 July 2017
Accepted: 3 September 2017

ABSTRACT

Background and Aim: Hydrocephalus can cause ventricular expansion, which if not treated promptly, can result in brain damage. The hydrocephalus-induced damage is not fully improved, even by means of surgical procedures, leading to permanent damages to the brain.

Methods and Materials/Patients: The aim of this study was to evaluate the demographic characteristics as well as hydrocephalus in patients with head trauma in Poursina Hospital, Rasht. The information including age, sex, Glasgow Coma Scale (GCS), trauma mechanism and accompanying brain injuries on admission were recorded. Patients with hydrocephalus diagnosed by CT scan underwent further investigation and therapeutic approaches. The treatment-related results were collected based on the GOS scale. Finally, the data were entered into SPSS version 18, and the results were analyzed by Fisher’s exact test, and Independent t-test.

Results: Of the 548 patients, hydrocephalus was observed in 14 patients (2.6%). The mean age of the patients was 44.07±24.48 years old. 31.1% of men (14 cases) had hydrocephalus, while none of women suffered from this complication. Car accidents (12 people) and fall (2 people) were identified as causes of incident in hydrocephalus patients. Head injury severity in most patients with hydrocephalus was mild (n=7, GCS=13-15) and moderate (n=6, GCS=9-12), and severe (n=1, GCS=3-8). Subarachnoid hemorrhage (n=5) and then epidural hematoma (n=4) and intracerebral hemorrhage (n=4) had the most severe damage to the skull. Most patients (n=11) were treated by surgery. Three patients recovered completely. Moderate disability, severe disability, vegetative state, and death occurred in 3, 2, 1, and 5 Patients, respectively. According to independent t-test, there is a statistically significant relationship between Glasgow Coma Scale and hydrocephalus (P<0.03). Fisher’s exact test also showed a statistically significant relationship between intracerebral hemorrhage (P=0.045) and intraventricular hemorrhage (P=0.013) on admission with hydrocephalic incidence.

Conclusion: This complication was mostly observed in young traumatic patients (younger than 40 years of age) and in patients with mild head injury. Therefore, it is necessary to pay attention to these people in order to detect hydrocephalus, if any, as soon as possible, and these patients be treated appropriately.
1. Introduction

Trauma is the most common cause of death in the first four decades of life [1]. In Iran, cardiovascular diseases, followed by trauma are the most frequent causes of death in all age groups [1]. Post-Traumatic Hydrocephalus (PTH) is an important and treatable complication following Traumatic Brain Injury (TBI) [2]. Various studies have reported a wide range of incidence (0 to 45%) for PTH [3]. A large part of these differences in the occurrence of PTH is due to application of different sets of clinical criteria in its diagnosis [4, 5]. PTH is not a single clinical concept, but a pathophysiologic condition with many aspects [6], which can be caused by excess production of Cerebrospinal Fluid (CSF), obstruction of normal flow of CSF or its inadequate absorption, which accumulates extreme pericerebral CSF [7]. If untreated, it can cause disability and death [7, 8].

Hydrocephalus is classified into communicative and obstructive types [9]. Obstructive hydrocephalus is the result of blockage of CSF flow within the ventricles [9]. The sylvian aqueduct is the most common position of intraventricular obstruction of CSF [10]. In communicative hydrocephalus, there is a connection between the ventricles and the lumbar CSF, despite of blocked flow of CSF at the brain surface or impaired CSF absorption [9]. In most cases, hydrocephalus occurring due to trauma is delayed communicative one. Obstructive hydrocephalus following head injury occurs rarely and is often associated with Intraventricular Hemorrhage (IVH) [11]. Some studies have reported the onset of PTH from two weeks to one year after TBI [12], and the earliest reported time for PTH incidence was seven hours [13, 14]. CT scan and MRI and other complementary techniques allow observation of the evolution and progress of hydrocephalus from the first to the last stages [15].

However, progressive ventricular expansion is observed in most patients and shunt surgery is recommended [16, 17]. The data from the studies show that if the ventricular expansion caused by PTH is not treated in a timely manner, it can lead to brain damage that may not be fully recovered by surgical procedures that change in the flow path of CSF [14]. Considering the need for timely diagnosis and treatment for patients with PTH, further studies on this complication may be effective in reducing mortality and disability and helping to improve these patients, therefore we decided to study the patients with head trauma in Rasht Pour sina hospital.

2. Methods and Materials/Patients

In this study, patients with severe or moderate injury (GCS 12) and patients with mild head injury (GCS=13-15) (accompanying brain injuries observed in CT scan when the patients were admitted) entered the study. The patients who died early in the follow-up period or became unavailable or had hydrocephalus prior to head trauma or had variables with an independent role in hydrocephalus incidence were excluded from the study. Primary information including age, sex, GCS and trauma mechanism (crashes, falls, quarrel, etc.) was collected from the patients and recorded. The patients with hydrocephalus observed in their CT scan follow up were further investigated. Also, information about the type of treatment used for these patients (medical or surgical treatment) as well as the patients’ therapeutic outcomes were determined based on the Glasgow Outcome Scale (GOS) and related information was recorded. The data were entered into SPSS software (version 18) and analyzed by Fisher’s exact test and independent t-test.

3. Results

Of 548 patients with head injury examined in this study, 2.6% (14 patients) had hydrocephalus. The mean age of the patients was 44.07±24.48 years, ranging from 7 to 83 years old, mostly less than 40 years of age. All hydrocephalus patients were male. Considering the mechanism of trauma in the studied patients, two leading causes of accidents were identified as crashes (85.7%, n=12), and fall (14.3%, n=2) in patients with hydrocephalus. In this study, the level of patients’ consciousness was evaluated on the basis of GCS on admission. Accordingly, the severity of head injury was mild in 50% of patients with hydrocephalus (n=7) (GCS=13-15), and was moderate in 42.9% of the patients (n=6) (GCS=9-12), and was severe in 7.1% of the patients (only one patient) (GCS=3-8) (Table 1). The most common cranial damages observed in CT scan images in patients with hydrocephalus were Subarachnoid Hemorrhage (SAH) (35.7%, n=5) and then Epidural Hematoma (EDH) (28.6%, n=4) and Intracerebral Hemorrhage (ICH) (28.6%, n=4). 78.6% (n=11) of patients underwent surgery, and only 21.4% (n=3) of the patients with PTH were treated medically (Table 2).

The outcome of patients was evaluated based on the GOS and categorized in five groups of complete recovery, mild disability, moderate disability, severe disability, vegetative state, and death. Accordingly, 21.4% (n=3) had complete recovery. Moderate disability was found in 21.4% (n=3), severe disability in 14.3% (n=2), vege-
Independent T-test demonstrated that no statistically significant relationship was observed between age and hydrocephalus (P=0.06), but there was a statistically significant relationship between GCS and hydrocephalus (P=0.03). Also, a statistically significant relationship was found between GCS and hydrocephalus (P=0.063) and the mechanism of trauma and hydrocephalus (P=0.817) using Fisher’s exact test showed that no statistically significant relationship was demonstrated between these variables and hydrocephalus incidence. In addition, the results of the analysis of the test about the association between accompanying cranial damages and hydrocephalus found that only ICH (P=0.045) and IVH (P=0.013) on admission had a statistically significant relationship with hydrocephalus incidence.

4. Discussion

Ventricular dilatation is a common complication in patients with TBI that can be seen in subsequent examinations on the patient and can become PTH [18]. If not

Table 1. Clinical characteristics in non-hydrocephalic and hydrocephalic patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non Post-traumatic Hydrocephalus</th>
<th>Post-traumatic Hydrocephalus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td><40 Years 359(98.4%)</td>
<td>6(1.6%)</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>40-60 Years 113(96.6%)</td>
<td>4(3.4%)</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>>60 Years 62(93.9%)</td>
<td>4(6.1%)</td>
<td>66</td>
</tr>
<tr>
<td>Sex</td>
<td>Male 437(96.9%)</td>
<td>14(3.1%)</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Female 97(100%)</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>GCS</td>
<td>Mild head injury(GCS≤8) 155(95.7%)</td>
<td>7(4.3%)</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Moderate head injury(GCS=9-13) 202(99.5%)</td>
<td>1(0.5%)</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Severe head injury(GCS=14-15) 177(96.7%)</td>
<td>6(3.3%)</td>
<td>183</td>
</tr>
<tr>
<td>Trauma mechanism</td>
<td>Crash 449(97.4%)</td>
<td>12(2.6%)</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Fall 66(97.1%)</td>
<td>2(2.9%)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Quarrel 4(100%)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hit 14(100%)</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Others 1(100%)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Frequency distribution of accompanying brain damages in non-hydrocephalic and hydrocephalic patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non Post-traumatic Hydrocephalus</th>
<th>Post-traumatic Hydrocephalus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-arachnoid Hemorrhage (SAH)</td>
<td>111(95.7%)</td>
<td>5(4.3%)</td>
<td>116</td>
</tr>
<tr>
<td>Subdural Hematoma (SDH)</td>
<td>86(98.9%)</td>
<td>1(1.1%)</td>
<td>87</td>
</tr>
<tr>
<td>Epidural Hematoma (EDH)</td>
<td>141(97.2%)</td>
<td>4(2.8%)</td>
<td>145</td>
</tr>
<tr>
<td>Intracerebral Hemorrhage (ICH)</td>
<td>52(92.9%)</td>
<td>4(7.1%)</td>
<td>56</td>
</tr>
<tr>
<td>Intraventricular Hemorrhage (IVH)</td>
<td>18(85.7%)</td>
<td>3(14.3%)</td>
<td>21</td>
</tr>
<tr>
<td>Contusion</td>
<td>139(96.5%)</td>
<td>5(3.5%)</td>
<td>144</td>
</tr>
</tbody>
</table>
had closed head injury. In these patients, the primary injury were examined. It was found that 20 patients 25 patients with hydrocephalus caused by post-traumatic was 13±2.8, ranging from 6 to 15 the mean GCS on admission in hydrocephalic patients low GCS on admission significantly higher in patients with hydrocephalus occurred significantly higher in patients with hydrocephalus (n=7) (GCS=13-15) and then moderate (n=6) (GCS=9-12), and severe (n=1) (GCS=3-8). In another study, most patients (68%) had severe head injuries on admission (GCS less than or equal to 8) [13].

In a study by Kim et al., GCS on admission was categorized in four groups; less than 7 in 39 patients, between 8 and 10 in 13 patients, between 11 to 13 in 9 patients, and between 14 and 15 in 3 patients. Hydrocephalus occurred significantly higher in patients with low GCS on admission [19]. Another study showed that the mean GCS on admission in hydrocephalic patients was 13±2.8, ranging from 6 to 15 [20]. In another study, 25 patients with hydrocephalus caused by post-traumatic injury were examined. It was found that 20 patients had closed head injury. In these patients, the primary head injury in 15 patients was severe (GCS ≤8) [21]. In our study, the most frequent accompanying cranial injuries observed in CT scan images were SAH (n=5), then EDH (n=4), and ICH (n=4). In another study on patients with hydrocephalus, 28 patients (76%) suffered from brain contusion, 19(50%) SAH, 18(47%) SDH, 3(8%) IVH, and 3(8%) edema (13). Another study on patients undergoing shunt surgery due to hydrocephalus following post-traumatic injury showed ICH including IVH in 34 patients, traumatic SAH in 14 patients, acute SDH in 5 patients, EDH along with skull fracture in 4 patients, and skull fracture in 3 patients [19]. Another study, based on CT scan findings in early stages of injury, demonstrated diffuse edema in 7 patients, brain contusion in 6 patients, SAH in 3 patients, and normal CT scans in 4 individuals [21].

Studies have also found that the incidence of hydrocephalus is higher when injuries due to intracerebral trauma such as brain contusion, and intracerebral edema and hematoma occur [19]. For example, intracerebral hematoma via mass effect can cause blockage of CSF flow and thus play a role in hydrocephalus [21]. In our study, 11 patients underwent surgical treatment, and only 3 patients with PTH were treated medically. In the study of Sarkari et al., 25 patients (65%) were put under decompressive craniectomy (DC) and 13 patients (65%) were treated medically [13].

In another study, lumbar-peritoneal (LP) shunts were placed in 52 patients with communicative hydrocephalus following post-traumatic injury. Ventriculoperitoneal (VP) shunts were used in 12 patients with non-communicative hydrocephalus or patients with communicative hydrocephalus with no recovery after lumbar tapping [19]. Another study showed that 24 patients with hydrocephalus underwent VP shunt, and 1 patient with acute head injury received hyperventilation for 48 hours [21]. Based on the findings of this study, 3 patients recovered. Moderate disability in 3, severe disability in 2, vegetative state in 1, and death in 5 people occurred. In another study, 30 patients with hydrocephalus (78%) recovered clinically after VP shunting. 2 patients (5%) manifested no improvement, and 6 patients (15%) died [13].

Mazzini and colleagues in their study on patients undergoing shunt surgery found that only 1 patient recovered completely one year after traumatic injury (GOS=5), 3 patients (23%) had mild disability (GOS=4), 7 patients (54%) suffered from severe disability (GOS=3), and 2 patients (15%) in PVS [20]. Another study demonstrated that all patients recovered after surgery. 1 patient was treated with hyperventilation and was discharged after 2 weeks [21]. According to the results of
our study and the low GCS means that the patient has suffered from severe brain damage and a more severe brain injury can lead to a more severe disorder in the absorption of CSF and contribute to ventricular expansion [16]. In this study, the results of the analysis regarding cranial damages accompanying hydrocephalus showed that only ICH (P=0.045) and IVH (P=0.013) had a statistically significant relationship with incidence of hydrocephalus. In the study by Tian et al., the results of X^2 and Fisher exact tests demonstrated that there was a significant relationship between hydrocephalic incidence and GCS on admission [16]. A study conducted by Mazzini et al. found no relationship between the severity of hydrocephalus and the type of damage assessed by primary CT scan [20].

5. Conclusion

Hydrocephalus is one of the complications that can occur in people with trauma. According to the results of our study, this complication was more common in young patients (younger than 40 years of age) with trauma, thus it is necessary to use preventive programs to minimize the occurrence of trauma in this age group. Also, given this complication was observed in patients with mild head injury, more attention is needed in order to detect hydrocephalus, if any, as soon as possible, and these patients be treated appropriately, and hospital costs and long-term hospitalization due to lack of timely diagnosis and treatment be reduced. It is also necessary to carry out more studies such as clinical trials or cohorts in order to investigate, to a large extent, the occurrence of this complication and its causes in patients.

During the follow-up, the patients who died or became unavailable were excluded from the study. Since mortality and morbidity are observed more often in severe TBI, more patients with severe TBI were excluded compared to the patients with moderate or severe TBI, more patients with severe TBI were excluded from the study. Since mortality and morbidity are observed more often in severe TBI, more patients with severe TBI were excluded compared to the patients with moderate or severe TBI.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

