Epidemiology of Traumatic Spinal Injury in North of Iran: A Cross-Sectional Study

Kaveh Haddadi¹, Farzaneh Yosefzadeh²

¹Assistant Professor, Department of Neurosurgery, Imam Khomeini hospital, Orthopedic Research Center, Mazandaran University Of Medical Sciences, Sari, Mazandaran, Iran
²MD, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran

*Corresponding Author Address: Department of Neurosurgery, Imam Khomeini hospital, Orthopedic Research Center, Mazandaran University Of Medical Sciences, Sari, Mazandaran, Iran. E mail:kh568hd@yahoo.com, Tel/Fax number: +98-11-33378789, Postal code: 48166-33131

Article Type: Research Article Received: October 15, 2015, Last revised: February 9, 2016, Accepted: February 15, 2016

Introduction

Spinal cord injury (SCI) is a highly destructive situation (1) which is related to severe disability and death after trauma (2). Incidence of SCI is 12.1-57.8 cases per million (1). The cost to the patient, their family and the health care system can be enormous (3). In the US, spinal cord injury is the most costly traumatic condition. Johnson et al. (4) in a prospective population-based cohort study, reported for each patient, costs for home care, services, and secondary medical complications that reached almost $200,000 during the first 2 years after injury. The average cost of the first admission is approximately $95,203, with home modifications costing $8,203, medical services and equipment costing $7,866, and nurse and home care support costing $6,269 per year (5). An understanding of the epidemiology of SCI is essential for planning cost-effective care and for developing preventive strategies (6). Significant changes in SCI prevalence were observed among geographic locales, so these data are principal for local and regional health care economics (5). Rahimi- Movaghar et al. (2009) performed a population-based study to determine the prevalence of spine injury (SI) and spinal cord injury (SCI) in Tehran, Iran (7). The prevalence of traumatic SCI in Tehran ranged from 1.2 to 11.4 per 10,000 people.

Abstract

Background & Aim: Acute injuries of the spine and spinal cord are causing the greatest amount of disability. They produce high cost outcomes for patients and society psychologically and economically. Knowing the epidemiology of these injuries play an important role in planning for prevention and conservative treatment. But now, we have little information about this in our country. The aim of this study was to determine epidemiology of spinal injury in Sari Imam Khomeini hospital, main trauma center of Mazandaran, an Iranian province.

Methods & Materials/Patients: The present cross-sectional study was conducted on all cases of traumatic spine injury, who were admitted in Sari Imam Khomeini hospital, main trauma center of Mazandaran, during 2012-2014. Checklist included demographic characteristics (age, gender, location), mechanism of injury of the spine, the level of injury detected by radiologic imaging and MRI and CT scans, the scoring systems for assessing the severity of injury that were American Spinal Injury Association (ASIA) scale and The Injury Severity Score.

Results: Among a total of 906 cases, 57.8% (n=523) were male and 42.2% (n=383) were female. Male/Female ratio was 1.37:1. The most common age group at which spinal injury occurred in males was 25-44 years-old, and in females was 45-64 years-old (P=0.044). The most frequent causative mechanism of trauma was traffic accidents (especially motorcycle-caused accidents). The most common injury in spine fracture was compression and burst types. Among 93 patients with abnormal findings on neurological examination, 45 of them had complete spinal cord injury (class A of ASIA) and 48 of them had incomplete spinal cord injury (class B, C, D of ASIA).

Conclusion: Motor vehicles accidents are the most common cause of spine and spinal cord injury in Mazandaran, a region of the North of Iran. The incidence of spinal cord injury is high if ISS is more than 12.

Keywords: Epidemiology; Spinal Injuries; Iran, Mazandaran

Please cite this paper as: Haddadi K, Yousefzadeh F. Epidemiology of Traumatic Spinal Injury in North of Iran: A Cross-sectional Study. Iran. J. Neurosurg. 2015;1(4): 11-14
Epidemiology of Traumatic Spinal Injury

regarding the epidemiology of SCI in these countries. The aim of the study was to determine regional epidemiology, demographics, mechanisms and severity of spine and spinal cord injury in a great area of north of Iran, Mazandaran.

Methods and Materials/Patients

Our cross-sectional study was performed on all patients with traumatic spine injury admitted to our hospital, the major trauma center in Mazandaran, an Iranian province, between January 2012 and November 2014. The demographic characteristics, mechanism of trauma, level and type of spinal fracture detected by radiologic imaging and MRI and CT scans, were obtained. We used the American Spinal Injury Association (ASIA) scale and Injury Severity Score (ISS) for classifying the severity of injury.

According to ASIA scale, patients were classified as (A: complete; B, C, D: incomplete; E: normal) and on the basis of ISS, they were categorized as (severe: > 12, moderate: 7-12, mild: < 7). All data were analyzed by SPSS.

Results

Total of 906 patients with traumatic spine injury (SI) were identified; 57.8% (n=523) of patients were male and 42.2% (n=383) were female. Male/female ratio was 1.37:1. (Table 1)

<table>
<thead>
<tr>
<th>Level of Injury</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>189</td>
</tr>
<tr>
<td>Thoracic</td>
<td>77</td>
</tr>
<tr>
<td>Thoracolumbar</td>
<td>492</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>148</td>
</tr>
</tbody>
</table>

Table 2. Incidence of Spinal Fractures related to Spinal Area

<table>
<thead>
<tr>
<th>Level of Injury</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>189</td>
</tr>
<tr>
<td>Thoracic</td>
<td>77</td>
</tr>
<tr>
<td>Thoracolumbar</td>
<td>492</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>148</td>
</tr>
</tbody>
</table>

Table 3. Incidence of Severity of Trauma and Abnormal Finding on Neurological Examination according to Trauma Mechanism

Discussion

At present, reporting on prevalence of spinal injury in Iran is conducted very little (4-7). This is a prospective cross sectional study on the SCI patients admitted in the major trauma center in Mazandaran, an Iranian province from 2012 to 2014. According to our study, injuries in males were more than those in females. In previous studies' reports, our findings have been confirmed (11-19). Ning et al. (2010) did systematic review in Asia; they found that men were subject to higher risk of TSCI than women (20). This difference may be caused by social expectations that men should support their family and men tend to do dangerous works to get more money. Peak of injury in males occur in 25-44 year-olds (Figure 1), and traffic accident was the most common cause of SCI in 25-44 year-olds. This finding is similar to Youssefzadeh et al. (2008) and Taghipour et al. (2005) and Fakharian et al results.(2003) (9,11,21). In all countries, the most active members of society, and despite regional and demographic differences, these studies confirm worldwide tendency.

The peak frequency of SI in males occurred in 25-44 year-old age group, and in females took place in 45-65 year-old age group. Men were significantly younger than women (p=0.044). Traffic accidents were the most common cause of spine injury (71.6%). The remaining ones were fall (26.5%) and other mechanisms (1.8%). Traffic accidents tended to occur in younger age group (90.9% in 15-24 year-olds), whereas falls tended to happen in older patients (38.5% in >64 years-old) (p=0.004) (Figure 1). Thoracolumbar fractures were more common in patients with motor vehicle accidents (74.1%), while thoracic fractures were more common in fall patients (40%). Table 2 shows the incidence of spinal fractures from traumatic causes based on spinal area.

The incidence of SI gradually increased. Common cause in Bangladesh, (37, 38) there was a large group of old patients with degenerative cervical spine changes who were more exposed to a minor damage (e.g. a low fall), so the number of low falls-induced TSI gradually increased. Common cause in Bangladesh, (37, 38) is falls, while carrying heavy loads on neck or back.
Firearm wounds is a specific problem in Afghanistan (39), Jordan (40) and southeastern Turkey (41). Variation of life style in different countries and different regions of a country influence mechanism of trauma. Yousefzadeh et al. (2008) showed thoracolumbar spine was common area for fracture (42). In our study, thoracolumbar spine was common involved area for traffic accidents, and thoracic spine was common site for falling. But Heidari et al. (2010) reported that cervical spine fractures were significantly frequent in road traffic accidents and lumbar fractures were common in accidental falls (p<0.001) (12). We obtained ISS>12 in falling were more than that in traffic accident. This is contrary to finding of Heidari (12). This disagreement may be due to difference in life style of people in different areas. Abnormal neurological examination occurred in 11.27% of patients. This is similar to Yousefzadeh et al. (2008) and Fakharian et al. findings (2003) (9,42).

In short, as many studies, we found that traffic accidents and falls from height are the most common cause of spinal injury. So, education and prevention with strict traffic laws and optimization of transport and improving people’s living and working conditions can be effective in reducing spinal damages. Our study was the first investigation that was designed to analyze spinal injury in Mazandaran. In a localized Sari environment, the present study showed a considerable amount of spinal cord injury which was mainly due to simultaneous associated injuries and associated trauma in subjects with spinal injury. The results of our study will be used to recommend policy makers, prioritizing preventive measures, support the evaluation of interventions, and give guidance on the degree of injury and disability following specific types of TSF. Considering the high proportion of associated injuries in spinal injury, it is suggested that policy makers must provide preventive strategies to reduce the number and severity of spinal injury. Development of a nationwide SCI registry or observation system is essential to an understanding of the epidemiology, and the prevention of this costly health problem.

Conclusion
Motor vehicles accidents are the most common cause of spine and spinal cord injury in Mazandaran, a region in the north of Iran. Thoracolumbar fracture was more common in patients with motor vehicle accidents. The incidence of spinal cord injury is high if ISS >12. Education and prevention with strict traffic laws can be effective on reducing damage to spine.

Recommendation
For rehabilitation period of treatment, we recommended designing a multicentric study in all cities of Mazandaran with 5 year period followed by long term follow-up of all patients discharging from hospital. Calculating cost of the first admission and rehabilitation period of patients with spinal injury is mandatory in future.

Funding
None.

Conflicts of Interest
The authors have no conflicts of interest.

References
Epidemiology of Traumatic Spinal Injury