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Background and Aim: Preoperative blood product preparation is a common practice in 
neurosurgical patients. However, over-requesting of blood is common and leads to the wastage 
of blood bank resources. Machine learning (ML) is currently one of the novel computational data 
analysis methods for assisting neurosurgeons in their decision-making process. The objective of the 
present study was to use machine learning to predict intraoperative packed red cell transfusion. 
Additionally, a secondary objective focused on estimating the effectiveness of blood utilization in 
neurosurgical operations.

Methods and Materials/Patients: This was a retrospective cohort study of 3021 patients who had 
previously undergone neurosurgical operations. Data from the total cohort were randomly divided 
into a training dataset (n=2115) and a testing dataset (n=906). The supervised ML models of 
various algorithms were trained and tested with test data using both classification and regression 
algorithms.

Results: Almost all neurosurgical conditions had a cross-match to transfusion ratio of more than 
2.5. Support vector machine (SVM) with linear kernel, SVM radial kernel, and random forest(RF) 
classification had a performance with good AUC of 0.83, 0.82, and 0.82, respectively, while RF 
regression had the lowest root mean squared error and mean absolute error.

Conclusion: In almost all neurosurgical surgeries, preoperative overpreparation of blood products 
was detected. The ML algorithm was proposed as a high-performance method for optimizing 
blood preparation and intraoperative consumption. Furthermore, ML has the potential to be 
incorporated into clinical practice as a calculator for the optimal cross-match to transfusion ratio. 
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1. Introduction

reoperative blood product preparation is a 
routine practice in neurosurgical operations 
because several procedures are at high risk 
of intraoperative transfusion. [1-3] Traumatic 
brain injury (TBI) has an increased risk of trans-

fusion by 36%, while 25% of ruptured aneurysms have a 
risk of transfusion. Moreover, the transfusion rate of neu-
rosurgical operations in children has been reported to be 
between 25-95% of cases [2-5]. However, the cross-match 
to transfusion (C/T) ratio has been revealed at a high level 
because neurosurgeons usually request more units of pre-
operative blood products for safety in cases of unexpected 
bleeding [6, 7]. From the literature review, preoperative 
over-ordering of blood product preparation has been re-
ported. Chotisukarat et al. demonstrated the C/T ratio in 
1,018 patients with elective neurosurgical procedures was 
4.3% [6]. Furthermore, Saringcarinkul et al. studied pre-
operative blood product preparation and intraoperative 
transfusion and found that the C/T ratio was high at 6.6 [7]. 

	In the era of the Coronavirus (COVID-19) pandemic, 
blood donation has been disrupted globally to a sig-
nificantly lower level than normal period [8]. Chandler 
et al. reported that based on a survey approximately 
half of the blood donations decreased during the CO-
VID-19 pandemic in European countries, and a remark-
able drop was also observed in 32 African countries as 
well [9]. Therefore, optimization between preoperative 
blood production and intraoperative transfusion should 
be considered in case of a pandemic situation. 

	Machine learning (ML) is a novel computer data analysis 
technology that has been used to assist physicians in mak-
ing decisions in a variety of domains, including diagnosis, 
therapy response prediction, and prognostication [10]. For 
blood transfusion prediction, Liu et al. studied the predict-
ability of several ML algorithms in patients who received 
mitral valve surgery and found that the CatBoost algorithm 
established the best prediction with an area under the 
curve (AUC) of 0.888 (95% CI (confidence interval): 0.845-
0.909) [11], while Huang et al. reported that the model 
for the extreme gradient boosting and random forest (RF) 
algorithms had high accuracy at 83.34 and 82.35, respec-
tively [12]. Moreover, Feng et al. determined the predict-
ability of ML in patients who received surgery and found 
that the best-supervised ML algorithm for the prediction 
of transfusion was a light gradient boosting machine with 
AUC 0.908 (95% CI 0.907-0.913) [13]. From a literature 
review, few studies have mentioned ML applications for 
predicting blood transfusion needs in neurosurgical opera-
tions. Therefore, the present study aimed at using ML to 
predict intraoperative packed red cell transfusion. Besides, 
the secondary objective was to estimate the effectiveness 
of blood utilization in neurosurgical operations. 

2. Materials and Methods

Study design and study population 

	The retrospective cohort study was initiated by 
searching the electronics-based medical records of 
patients who were admitted and operated on in Song-
klanagarind Hospital, southern Thailand between Janu-
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Highlights 

• In the practice of neurosurgery, excessive blood product preparation for operations was seen.

• Machine learning (ML) is one of the innovative computer data analysis approaches used to assist neurosurgeons 
with preoperative blood product preparation.

• ML algorithms were suggested as a high-performance way to optimize the preparation of blood and its use during surgery. 

Plain Language Summary 

Preparing blood products before surgery is common in neurosurgical patients but wastage of blood resources is also 
important because of too many requests. Therefore, machine learning (ML) has been introduced as a new computa-
tional data analysis to help neurosurgeons in decision-making. The extracted algorithms optimize the preparation of 
blood products before and during the operation. In this retrospective cohort study, the data of 3,021 patients who 
had previously undergone neurosurgical operations were randomly divided into training and testing datasets. Almost 
all neurosurgical conditions had a cross-match to more than 2.5 transfusion ratio. ML algorithms can optimize the 
preparation of blood products before surgery and their consumption during surgical procedures.
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ary 2014 and January 2019. Patients with unavailable 
details of cross-match and transfusion were excluded. 
Collected data included age, gender, underlying disease, 
neurosurgical condition, height, body weight, American 
society of anesthesiologists (ASA) classification, opera-
tion, preoperative hematological laboratories, estimat-
ed blood loss by physicians, and units of intraoperative 
packed red cell transfusion. 

	Various neurosurgical conditions were categorized as 
follows: cranial tumor, cerebral aneurysm, traumatic 
brain injury, cerebrovascular disease, spinal condi-
tions, congenital disease, infection, and normal pres-
sure hydrocephalus. In detail, spinal conditions were 
classified according to etiology, such as tumor, trauma, 
infection, and degeneration. Moreover, congenital 
diseases were grouped into brain congenital diseases 
(congenital hydrocephalus) and spinal brain congeni-
tal diseases (spinal dysraphism). Patients’ physical 
status was evaluated using the ASA classification, and 
an emergency surgical procedure was defined as a de-
layed operation, possibly leading to a significant rise in 
the risk of life, disabilities, or injuries [14]. 

	The primary outcomes of the present study were the 
event of intraoperative packed red cell transfusion for 
each patient as the binary categorical variable, and the 
number of units of packed red cell transfusion as the 
continuous variable. Therefore, the secondary outcome 
described the effectiveness of blood utilization in gener-
al practice via the C/T ratio, transfusion probability (TP), 
and transfusion index (TI). These indexes were defined 
according to Zewdie et al. In detail, a C/T ratio of 2.5 
or less indicated the effectiveness of blood utilization. 
Moreover, TP of 30% or more and TI of 0.5 or more re-
vealed effective blood usage [15]. 

Ethical considerations 

The present study was approved by the Human Re-
search Ethics Committee, Faculty of Medicine, Prince 
of Songkla University (REC No. 64-477-10-1). Because 
of the retrospective design of the study, informed con-
sent could not be obtained from the patients. There-
fore, an informed consent waiver statement and the 
approval of the ethics committee at Prince of Song-
kla University waived the need for informed consent. 
All methods were performed following the relevant 
guidelines and regulations, adhering to the Strength-
ening the Reporting of Observational Studies in Epide-
miology guidelines. The patient’s identification num-
bers were encoded before analysis. 

Statistical analysis 

	We calculated the sample size using receiver operating 
characteristics (ROC) with the AUC formula [16]. Based 
on an AUC of 0.908 from the study of Feng et al. [13], a 
minimum of 540 patients from the testing data would 
be required to estimate the performance of the predic-
tive model with a given marginal error of 0.03 and a 95% 
confidence level. 

	The clinical characteristics were described using pro-
portion and percent, while descriptions of the con-
tinuous variables were performed by Mean±SD and 
standard deviation. The chi-square test was used to 
estimate the difference in the proportions between the 
two groups, whereas the independent t-test was per-
formed for comparing means between the transfusion 
group and the non-transfusion group. A P-value <0.05 
was considered statistically significant. Subsequently, 
the significant variables were included to train by ML in 
the next procedure. 

Machine learning

	The various algorithms for supervised ML were per-
formed with two proposed approaches as follows: ML 
classification and ML regression. ML classification was 
performed for predicting the binary output that was la-
beled as transfusion or non-transfusion. The algorithms 
for classification were conducted as follows: Naïve 
Bayes (NB) support vector machine with the linear ker-
nel (SVML), support vector machine with the radial ker-
nel (SVMR), k-Nearest Neighbors (KNN), Decision tree 
(DT), random forest (RF), and artificial neural network 
(ANN). Using ML regression, the number of units for 
red cell transfusion was predicted and calculated as a 
continuous quantity output. KNN, DT, RF, and ANN were 
performed as a response to this problem. 

	The training dataset and testing dataset were estab-
lished from the 70/30 splitting procedure. The training 
dataset was performed with five-fold cross-validation, 
and the training model for each algorithm was built. 
Therefore, the performance of these models was es-
timated with the testing dataset. The performance of 
each algorithm was calculated for sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), and accuracy from the confusion matrix. 
Further, the ROC with AUC was estimated for ML clas-
sification, with an AUC of ≥0.8 indicating good perfor-
mance [17, 18].
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	For regression performance, we used the scatter 
plot for comparing true values and predicted numbers 
of units for red cell transfusion. Pearson’s correlation, 
Spearman’s rank correlation, R-squared (R2), root mean 
squared error (RMSE) and mean absolute error (MAE) 
were used to estimate those results. Machine learning 
was performed using the R program, version 4.0.3 (The 
R project) with the “caret” package. Hence, the best 
training model was developed and deployed as a web 
application using the “shiny” package. 

3. Results 

Clinical and radiological characteristics 

	A total of 3,122 patients’ medical records were re-
viewed, with 101 patients being excluded due to un-
available outcomes. Consequently, the remaining 3,021 
patients were randomly divided into 70% training da-
taset and 30% testing dataset. Baseline clinical charac-
teristics are shown in Table 1. The population showed 
a slight male predomination, and the Mean±SD age 
was 46.36±20.71 years. Patients with intraoperative 
transfusions had a significantly higher mean age than 
the non-transfusion group. Brain tumor (45.7%) was a 
major neurosurgical disease in the present cohort, while 
the three most common operations were craniotomy 
(36.1%), craniectomy (12.1%), and burr hole (8.7%), 
respectively. For the transfusion group, an emergency 
operation was performed in more than half. Moreover, 
patients who received intraoperative packed red cell 
transfusions had a history of more frequent warfarin us-
age than the non-transfusion group.

	Table 2 shows several preoperative laboratories and 
other continuous variables. Patients with transfu-
sions had anemia and lower platelet counts than other 
groups, while white blood cell count and neutrophil-
to-lymphocyte (N/L) ratio increased in the transfusion 
group. Furthermore, the partial prothrombin time (PTT) 
ratio and international normalized ratio (INR) of the 
transfusion group were prolonged compared with the 
control group. 

Effectiveness index of preoperative blood preparation 

	The C/T ratio, TP, and TI in the present study are shown 
in Table 3. A high C/T ratio was observed in the total co-
hort. Almost all neurosurgical conditions had a C/T ratio 
of higher than 2.5, except TBI, while an extremely high 
C/T ratio was observed in spinal congenital diseases 
such as lipomyelomeningocele. In operation, only de-
compressive craniectomy had a low C/T ratio, whereas 

the remaining procedures had a high index. Moreover, 
shunt operation, ventriculostomy, and burr hole had a 
very high index. 

Factors associated with intraoperative transfusion

	Increased age was significantly associated with transfu-
sion (odds ratio (OR) 1.5, 95%CI 1.2-1.9). Other clinical char-
acteristics that increased the risk of intraoperative transfu-
sion were female gender, diabetes mellitus, renal failure, 
chronic warfarin usage, increased ASA classification, and 
increased amount of estimated blood loss. Neurosurgical 
conditions increased transfusion risk. In detail, when the 
reference group involved patients with brain tumors, pa-
tients with TBI (OR 1.70, 95%, CI 1.36-2.07) and cerebral 
aneurysm (OR 1.60, 95%CI 1.32-2.06) had a significantly 
higher risk for intraoperative blood utilization than the 
compared group. Based on the operation, decompressive 
craniectomy increased the risk of transfusion compared 
with craniotomy (OR 1.60, 95% CI 1.12-2.03). Furthermore, 
an emergency operation was a positive risk of intraop-
erative transfusion, whereas the operation of surgical site 
infection was the protective factor. For preoperative labo-
ratories, the risk factors associated with blood transfusion 
were white blood cell count, N/L ratio, prolonged PTT ratio, 
and INR, while the level of hemoglobin, hematocrit, and 
platelet were protective factors for intraoperative transfu-
sion, as shown in Figure 1. 

Machine learning 

	The total dataset was randomly split into a training data-
set (n=2115) and a testing dataset (n=906). Using the train-
ing dataset, various algorithms of supervised ML classifica-
tion were used to build the predictive model with factors 
associated with intraoperative transfusion in the former 
step. In detail, the model of each algorithm was turned and 
optimized for the best parameters using the caret package 
with five-fold cross-validation. As a result, SVML, SVMR, 
DT, and RF had AUCs at a good level, as shown in Figure 
2, whereas the models for SVML, SVMR, and RF had high 
sensitivity, PPV, and accuracy, as shown in Table 4. 

Using ML regression algorithms, the number of units 
of the packed red cell was predicted. The model of RF 
algorithms had the lowest values of RMSE and MAE. 
The actual unit of the transfused packed red cells and 
predicted units are plotted in Figure 3. Therefore, the 
results of the RF model had the highest correlation with 
the true values. For implications in general practice, 
we proposed the example of the web application via 
https://psuneurosx.shinyapps.io/RF_Transfusion/, as 
shown in Figure 4. 
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Table 1. Demographic data by red cell transfusion (n=3021)

Characteristics 

No. (%)

P*
Total 

Intraoperative Red Cell Transfusion 

No (n=1779) Yes (n=1242)

Sex
Male 1567(51.9) 991(55.7) 576(46.4)

<0.001
Female 1454(48.1) 788(44.3) 666(53.6)

Age (y)

0-15 323(10.7) 216(12.1) 107(8.6)

0.002>15-60 1921(63.6) 1132(63.6) 789(63.5)

>60 777(25.7) 431(24.2) 346(27.9)

Underlying disease

Hypertension 916(30.3) 535(30.1) 381(30.7) 0.72

Diabetes mellitus 344(11.4) 184(10.3) 160(12.9) 0.03

Dyslipidemia 444(14.7) 277(15.6) 167(13.4) 0.10

Liver disease 101(3.3) 55(3.1) 46(3.7) 0.35

Renal failure 142(4.7) 71(4.0) 71(5.7) 0.02

Preoperative current 
medication

Antiplatelet 117(3.9) 62(3.5) 55(4.4) 0.18

Clexane  12(0.4) 8(0.4) 4(0.3) 0.58

Warfarin 27(0.9) 10(0.6) 17(1.4) 0.02

Neurosurgical 
condition

Cranial tumor 1382(45.7) 836(47.0) 546(44.0) <0.001

Cerebral aneurysm 412(13.6) 198(11.1) 214(17.2)

Traumatic brain injury 466(15.4) 222(12.5) 244(19.6)

Non-aneurysm cerebro-
vascular disease 267(8.8) 155(8.7) 112(9.0)

Spinal operation-tumor 155(5.1) 118(6.6) 37(3.0)

Spinal operation-trauma 111(3.7) 76(4.3) 35(2.8)

Spinal operation-degener-
ative disease 34(1.1) 28(1.6) 6(0.5)

Spinal operation-infection 10(0.3) 3(0.2) 7(0.6)

Congenital disease–brain 71(2.4) 58(3.3) 13(1.0)

Congenital disease–spine 28(0.9) 21(1.2) 7(0.6)

Infection(non-surgical site 
infection) 76(2.5) 55(3.1) 21(1.7)

Normal pressure hydro-
cephalus 9(0.3) 9(0.5) 0(0)

American society of 
anesthesiologists 

classification

1 2(0.1) 2(0.1) 0

<0.001
2 215(7.1) 152(8.5) 63(5.1)

3 2764(91.5) 1611(90.6) 1153(92.8)

4 40(1.3) 14(0.8) 26(2.1)
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Characteristics 

No. (%)

P*
Total 

Intraoperative Red Cell Transfusion 

No (n=1779) Yes (n=1242)

Neurosurgical opera-
tion

Craniotomy 1090(36.1) 442(24.8) 648(52.2)

<0.001

Craniectomy 365(12.1) 110(6.2) 255(20.5)

Suboccipital or, rectosig-
moid approach 178(5.9) 90(5.1) 88(7.1)

Endoscopic approach with 
tumor removal 144(4.8) 111(6.2) 33(2.7)

Cranioplasty 38(1.3) 28(1.6) 10(0.8)

Burr hole with biopsy/
aspiration/irrigation 262(8.7) 224(12.6) 38(3.1)

Spinal operation with 
instrumentation 170(5.6) 112(6.3) 58(4.7)

Spinal operation without 
instrumentation 137(4.5) 110(6.2) 27(2.2)

Spinal operation in con-
genital condition 25(0.8) 17(1.0) 8(0.6)

Ventriculostomy insertion 157(5.2) 136(7.6) 21(1.7)

Shunt insertion 252(8.3) 232(13.0) 20(1.6)

Other 203(6.7) 167(9.4) 36(2.9)

Emergency operation 1439(47.6) 764(42.9) 675(54.3) <0.001

Surgical site operation 93(3.1) 71(4.0) 22(1.8) 0.001

* P of chi-square test

Figure 1. The odds ratio of variables associated with intraoperative transfusion 
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4. Discussion

	Almost all neurosurgical procedures had a C/T ratio of 
greater than 2.5, whereas TBI in the present cohort had a 
C/T ratio of 2.11 with high TP and TI. Because TBI has been 
considered a risk of unexpected hemorrhage and acute trau-
matic coagulopathy (ATC); therefore, cross-match and blood 
utilization were balanced. These results are in agreement 
with other prior studies. Boutin et al. conducted a system-
atic review and meta-analysis. They reported that the trans-
fusion rate of TBI was 28.2% (95% CI 27.2% to 29.3%) [3]. 
Moreover, ATC in TBI was observed at 35.2% (95% CI 29.0-
41.4) and an increased transfusion rate was 41% according 
to Epstein et al. Moreover, chronic warfarin usage and pre-
operative increased INR, the second-highest impacts to in-
creased risk of transfusion, were in agreement with previous 
studies [19, 20]. Hence, children were one of the age groups 
that had been reported to have transfusion risk in the range 
of 25-95% [1-3]. Conversely, our results were not in agree-
ment with earlier studies that showed the elderly had an in-
creased risk to receive blood transfusion intraoperatively [1, 
21]. In the present study, several operations which had high 
C/T but low TP and TI were less likely to have intraoperative 
transfusions such as shunt, ventriculostomy, and burr hole 
procedures. Therefore, the preoperative blood preparation 

protocol should be discussed and revised to improve the ef-
fectiveness of blood utilization. 

	Currently, several ML algorithms are performed for the 
prediction of intraoperative packed red cell transfusion 
for optimizing blood utilization. Huang et al. predicted 
red cell transfusion in patients with pelvic fracture sur-
gery and reported that an extreme gradient boosting 
algorithm had the best AUC of 0.99 with 93% sensitiv-
ity [12], while Chang et al. found that SVM had an AUC 
of 0.703-0.707 with 78-79.2% sensitivity for predicting 
blood transfusion in orthopedic surgery [22]. Moreover, 
Walczak et al. used the ANN algorithm to predict peri-
operative transfusion with an AUC of 0.814-0.858 and 
sensitivity of 75-62% for in-patient operations [23]. As 
a result, the AUC of SVM and RF algorithms in classifi-
cation demonstrated good performance with 86%-84% 
sensitivity. Moreover, the RF with regression algorithm 
had the lowest RMSEs of 0.99-1.21 in the present study. 
The concordant findings were similar to what had been 
shown in previous studies. Feng et al. reported the RM-
SEs of various regression algorisms with testing data 
in a range of 0.92-6.26 [13]. As the RF algorithm was 
achieved with the testing dataset for both classification 
and regression, we demonstrated that the web applica-
tion may be a user-friendly tool that could be integrated 
into general practice. 
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Table 2. Comparison of preoperative laboratory and other variables by red cell transfusion (n=3021)

Variables Mean±SD

No. (%) 

P*Intraoperative Red Cell Transfusion

No Yes

Hematocrit (%) 37.99±11.11 13.16(5.64) 35.93(7.07) <0.001

Hemoglobin (g/dL) 12.68±4.90 13.16(5.64) 11.99 3.44) <0.001

White blood cell count (x103/µL) 11.44±9.45 10.90(4.94) 12.22(13.46) 0.001

Neutrophil (%) 68.32±16.89 67.78(15.52) 69.10(18.65) 0.04

Lymphocyte (%) 22.91±13.93 23.42(13.52) 22.17(14.40) 0.01

Neutrophil-to-lymphocyte ratio 6.25±9.80 5.73(8.67) 7.00(11.28) 0.001

Platelet count (x103/µL) 295.06±119.00 301.09(116.63) 286.41(121.83) <0.001

Prothrombin time ratio  0.96±0.16 0.95(0.13) 0.97(0.19) 0.01

International normalized ratio 1.06±0.16 1.04(0.11) 1.08(0.21) <0.001

Age (y) 46.36±20.71 45.41(20.88) 47.72(20.39) 0.003

Body mass index (kg/m2) 22.99±4.44 23.06(4.56) 22.88(4.26) 0.27

Estimate blood loss (mL) 598.71±929.4 244.15(289.74) 1106.55(1242.36) <0.001

*P of t-test
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Table 3. Cross-match to transfusion ratio, transfusion probability, and transfusion index of packed red cells by neurosurgical condition/
operation

Neurosurgical 
Condition/
Operation

Preoperative Preparation Intraoperative Utilization

C/T 
ratio TP TIPatient 

with cross-
match (n)

Total  
cross-match 

(units)

Patient  
received  

transfusion (n)

Total transfusion 
(units)

Ne
ur

os
ur

gi
ca

l c
on

di
tio

n

All 282 10024 1242 3162 3.17 43.10 1.10

Cranial tumor 1323 4630 546 1412 3.28 41.27 1.07

Aneurysm 396 1426 214 490 2.91 54.04 1.24

TBI 448 1584 244 749 2.11 54.46 1.67

CVA 256 890 112 267 3.33 43.75 1.04

Spine-tumor 154 537 37 89 6.03 24.03 0.58

Spine-trauma 108 368 35 66 5.58 32.41 0.61

Spine-degen 34 109 6 14 7.79 17.65 0.41

Spine-infection 10 38 7 11 3.45 70.00 1.10

Cong–brain 55 145 13 20 7.25 23.64 0.36

Cong-spine 24 71 7 7 10.14 29.17 0.29

Infection 71 220 21 37 5.95 29.58 0.52

NPH 3 6 0 0 - 0 0

Ne
ur

os
ur

gi
ca

l o
pe

ra
tio

n

Craniotomy 1086 4171 648 1586 2.63 59.67 1.46

Craniectomy 361 1365 255 820 1.66 70.64 2.27

SOC/Retro 176 658 88 165 3.99 50.00 0.94

Endoscopic approach 144 460 33 70 6.57 22.92 0.49

Cranioplasty 34 101 10 19 5.32 29.41 0.56

Burr hole 240 741 38 56 13.23 15.83 0.23

Spinal operation with 
inst 169 587 58 114 5.15 34.32 0.67

Spinal operation 
without inst 134 456 27 76 6.00 20.15 0.57

Spinal operation in 
Cong 25 76 8 9 8.44 32.00 0.36

Ventriculostomy 
insertion 143 438 21 37 11.84 14.69 0.26

Shunt insertion 202 515 20 38 13.55 9.90 0.19

Other 168 456 36 64 7.13 21.43 0.38

Abbreviations: C/T ratio: Cross-match to transfusion ratio; Cong: Congenital disease; CVA: Non-aneurysm cerebrovascular disease; degen: 
Degenerative disease; inst: Instrumentation; NPH: Normal pressure hydrocephalus; Retro: retrosigmoid approach; SOC: Suboccipital ap-
proach; TBI: Traumatic brain injury; TI: transfusion index; TP: Transfusion probability
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Table 4. Performances of machine learning each algorithm

Algorithm Sensitivity Specificity PPV NPV Accuracy AUC

Classification

NB 0.78 0.78 0.87 0.65 0.78 0.76

SVML 0.86 0.79 0.85 0.80 0.83 0.83

SVMR 0.84 0.79 0.86 0.76 0.82 0.82

KNN 0.79 0.72 0.81 0.70 0.76 0.76

DT 0.80 0.84 0.75 0.82 0.77 0.80

RF 0.84 0.78 0.85 0.78 0.82 0.82

ANN 0.73 0.80 0.91 0.52 0.75 0.72

Algorithm Pearson’s 
correlation

P of Pear-
son’s correla-

tion 

Spearman’s 
rank correla-

tion
R2 RMSE MAE

Regression

KNN 0.75 <0.001 0.62 0.57 1.21 0.77

DT 0.80 <0.001 0.70 0.63 1.10 0.68

RF 0.84 <0.001 0.74 0.70 0.99 0.60

ANN 0.54 <0.001 0.57 0.29 1.52 0.96

Abbreviations: ANN: Artificial neural network; DT: Decision tree; KNN: K-nearest neighbors; NB: Naïve Bayes; SVML: Support vector ma-
chine with linear kernel; SVMR: Support vector machine with radial kernel; R2: R-squared; RF: Random forest classifier; RMSE: Root mean 
squared error; Mae: Mean absolute error

Figure 2. ROC curves of each algorithm 
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The ML application for intraoperative transfusion has 
high sensitivity. These ML models may be involved in 
general practice as screening tools for supporting neu-
rosurgeons aiming to optimize the Maximum Surgical 
Blood Order Schedule (MSBOS). To the best of the au-
thors’ knowledge, the present study was the 1st paper 
showing the predictability of ML in intraoperative trans-
fusion, both classification, and regression, in neurosur-
gical operations. These challenges calculate the MSBOS 
using ML, while prior studies calculated MSBOS by for-
mula (1.5*TI) [6, 7] or consensus according to the proce-
dures from prior studies [24, 25]. 

Study limitations

 The limitations in the study should be recognized, in 
which multicollinearity may be considered in several pa-
rameters. In detail, we needed to use all significant pa-
rameters for the training process because more dimen-

sions in the dataset supported the learning processes 
and predictability [26]. Therefore, the results demon-
strated the high performance of the RF model that was 
appropriate to deploy as a clinical prediction tool. In the 
future, external validation and impact analysis studies 
should be conducted to confirm the performance of 
the ML model. ML is a modern predictive approach that 
has been performed in various fields of neurosurgery 
including for tumors, TBI, or complications [18, 27, 28]. 
However, another clinical prediction tool has been pro-
posed for predicting clinical outcomes in neurosurgical 
fields. Nomogram is an alternative approach that has 
been published as a two-dimensional graphic scoring 
system [29, 30]. Recently, Tunthanathip et al. compared 
the performance of the nomogram and ML for the pre-
diction of intracranial injury in children [30]. Hence, a 
comparison of the capability of MSBOS prediction be-
tween both tools should be conducted in the future 
for balancing blood preparation and utilization in the 

Figure 3. Scatter plot of the actual unit and predicted unit of transfusion. A): K-nearest neighbors B): Decision tree C): Random forest D): 
Artificial neural network
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pandemic era. In addition, the selection bias could be 
caused by the retrospective study of the present study. 
Therefore, the prospective multicenter research poses 
a challenge to carry out in the future for the purpose of 
evaluating the generalizability of the prediction model.

5. Conclusion

	Preoperative overpreparation of blood products was 
observed in almost all neurosurgical procedures. The 
ML algorithm was proposed as a high-performance 
method for optimizing blood preparation and intraoper-
ative consumption. Furthermore, ML has the potential 
to be incorporated into clinical practice as a calculator 
for the optimal cross-match to transfusion ratio. How-
ever, these results should be interpreted with caution 
due to the retrospective nature of this study and the 
possible presence of selection bias. Further prospective 
studies are suggested to shed more light on this matter.
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