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Background and Aim: Brain mapping is the study of the anatomy and function of the Central 
Nervous System (CNS). Brain mapping has many techniques and these techniques are permanently 
changing and updating. From the beginning, brain mapping was invasive and for brain mapping, 
electrical stimulation of the exposed brain was needed. However, nowadays brain mapping 
does not require electrical stimulation and often does not require any complex involvement of 
patients. To perform brain mapping, functional and structural neuroimaging has an essential 
role. The techniques for brain mapping include noninvasive techniques (structural and functional 
magnetic resonance imaging [fMRI], diffusion MRI [dMRI], magnetoencephalography [MEG], 
electroencephalography [EEG], positron emission tomography [PET], near-infrared spectroscopy 
[NIRS] and other non-invasive scanning techniques) and invasive techniques (direct cortical 
stimulation [DCS] and intracarotid amytal test [IAT] or wada test). 

Methods and Materials/Patients: This is a narrative study on brain mapping in neurosurgery. To 
provide up-to-date information on brain mapping in neurosurgery, we precisely reviewed brain 
mapping and neurosurgery articles. Using the keywords “brain mapping”, “neurosurgery”, “brain 
mapping techniques”, and “benefits of brain mapping”, all of the related articles were obtained 
from Google Scholar, PubMed, and Medline and were precisely studied.

Results: To perform an effective and safe neurosurgical intervention, precise information about 
the structural and functional anatomy of the brain is obligatory. Based on the information on 
brain mapping, the selection of suitable patients for the operation, the plan of appropriate 
operative approach, and good surgical results can be acquired. To provide this information, 
we can use brain mapping techniques that were formerly applied in neuroscientific brain 
mapping efforts with noninvasive techniques, such as fMRI, MEG, dMRI, PET, etc and invasive 
techniques, such as DCS, IAT, etc. 

Conclusion: Functional brain mapping is a constantly evolving fact in neurosurgery. All stages 
in obtaining a functional image are complex and need knowledge of the basic physiologic and 
imaging features. 
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1. Introduction

ince about a century ago, neurosurgeons 
have been involved with brain mapping ef-
forts. Functional brain mapping has a cen-
tral role in some neurosurgical operations 

and during functional neurosurgical procedures. The 
followings are some tips and pearls about brain map-
ping in neurosurgery to extend our current understand-
ing of brain mapping.

2. Methods and Materials/Patients

We concisely reviewed brain mapping in neurosurgery 
to provide up-to-date information. Using the keywords 
of “brain mapping”, “neurosurgery”, “brain mapping 
techniques”, and “benefits of brain mapping”, all of the 
related articles were retrieved from Google Scholar, 
Medline, PubMed, etc. and were precisely studied.

3. Results

To perform effective and safe neurosurgical interven-
tions, precise information about the structural and 
functional anatomy of the brain is required. Based on 
the information on brain mapping, the selection of 
suitable patients for operation, the plan of appropriate 

operative approach, and good surgical results can be 
obtained. To provide this information, we can use brain 
mapping techniques that were formerly applied in neu-
roscientific brain mapping efforts with noninvasive tech-
niques, such as functional magnetic resonance imaging 
(fMRI), magnetoencephalography (MEG), diffusion MRI 
(dMRI), positron emission tomography (PET), etc. and 
invasive techniques, such as direct cortical stimulation 
(DCS), intracarotid amytal test (IAT), etc [1]. 

4. Discussion

Brain mapping is the study of the anatomy and func-
tion of the central nervous system (CNS). Brain mapping 
has many techniques and these techniques are perma-
nently changing and updating. Two types of techniques 
for brain mapping are noninvasive techniques (fMRI, 
dMRI, MEG, electroencephalography (EEG), PET, near-
infrared spectroscopy (NIRS), and others) and invasive 
techniques (DCS and IAT or wada test). The DCS and 
IAT are often the gold standard techniques for doing 
functional brain mapping and language lateralization 
[2]. These two techniques become gold standard tech-
niques due to prolonged experience to perform these 
procedures and the way to localize eloquent brain ar-
eas. DCS and IAT are blocking or inhibition techniques. 
In inhibition or blocking techniques a specific brain area 

S

Highlights 

• Brain mapping is the study of the anatomy and function of the Central Nervous System (CNS).

• The techniques for brain mapping include noninvasive techniques and invasive techniques, the latter techniques 
are gold standard techniques for functional mapping and language lateralization. 

• Based on the information on brain mapping, the selection of suitable patients for operation, the plan of appropri-
ate operative approach, and good surgical results can be acquired.

Plain Language Summary 

Brain mapping is a fundamental part of modern neurosurgery. Brain mapping has undergone much radical and 
intense modernization and reforms in association with the introduction of new modern techniques since its incep-
tion in the 19th century. With brain mapping, you can map the eloquent areas of the cortex and this is essential for 
the safe and optimal removal of brain lesions. Brain mapping techniques are noninvasive versus invasive techniques 
and most of them are non-invasive. Direct cortical stimulation (DCS) and intracarotid amytal test (IAT) are invasive 
techniques and DCS remains the technique of choice. Magnetoencephalography (MEG) and functional magnetic 
resonance imaging (fMRI) are non-invasive techniques. These noninvasive techniques are minimally uncomfortable 
for patients, are quick, easy to do, and allow for a complete study. Currently, by combining different methods of brain 
mapping, we have better results in brain mapping. In this narrative article, we review the advantages, disadvantages, 
characteristics, indications, contraindications, and mechanisms of brain mapping methods.
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is temporarily disrupted from normal function and then 
the patient is tested for an inducible neurological deficit. 
Based on this, we can detect what deficit is expected to 
occur after surgical resection. The shortcomings of these 
techniques include highly invasive mapping techniques, 
both techniques need active patient cooperation dur-
ing testing, therefore they do not apply to patients with 
impaired function or altered level of consciousness, lim-
ited accessibility of the grey matter within the depth of 
the sulcus in DCS, and limited time for effective opera-
tive planning or regarding other therapeutic strategies 
in DCS because it is done either during the operation 
or a short time before it [3]. For this reason, less inva-
sive mapping techniques have been developed. In the 
majority of these techniques, following the patient’s be-
havioral task (paradigm), the consequent brain changes 
in the functionality of a particular brain area are mea-
sured, for example, in fMRI or MEG after performing a 
task by the patient, its effects are assessed in the blood 
flow, metabolism, or electric activity in activated brain 
areas. The major shortcoming of these techniques is 
the inability to differentiate between essential brain 
regions and supportive brain regions in performing the 
task. In MEG, brain activity is noninvasively mapped by 
measuring changes in local magnetic fields associated 
with neural activity. MEG is mostly used in preopera-
tive assessment of epileptic cases that are candid for 
epilepsy surgery. MEG temporal resolution is excellent 
but poor for PET and Diffusion Tensor Imaging (DTI). 
MEG spatial resolution is variable. MEG is the only non-
invasive technique that can block neural activity, which 
is why it can provide a significant advantage to the neu-
rosurgeon. Transcranial Magnetic Stimulation (TMS) is 
another method for brain mapping. TMS delivers mag-
netic fields at the scalp that pass through the scalp and 
skull and induces neuronal changes and stimulate the 
cortex like DCS. It is an emerging mapping technique. 
In TMS, a given brain region is directly stimulated and 
then shows the relationship of the brain tissue with the 
performance of the task. TMS can be used as an activa-
tion or inhibition method. In neurosurgical mapping, for 
example, it is used as an activation method for motor 
mapping and as an inhibition method for language map-
ping. Disadvantages of TMS include: it needs dedicated 
equipment and personnel, it is not a reliable method for 
mapping language function, it may be contraindicated in 
patients with seizures, and TMS may not clarify all of the 
regions involved in motor performance even with direct 
mapping of the primary motor cortex. Diffusion Tensor 
Imaging (DTI) is an advanced structural mapping and 
not a functional mapping method. DTI demonstrates 
the location and trajectory of white matter tracts. The 

basis for this demonstration is to quantify the magni-
tude and direction of water diffusion in brain tissue. The 
shortcomings of DTI include: DTI is sensitive to signal 
loss artifacts from air spaces, yields a small amount of 
information about the functional status of tracts, poor 
resolution of crossing white bundles, and poor demon-
stration of tracts with high curvature. In DTI, if physi-
cal continuity exists between tracts and cortical areas 
of interest, these tracts consider important tracts. To 
demonstrate and preserve these tracts, we can com-
bine DTI with fMRI. PET is another mapping technique. 
In PET after using a radiotracer as inhalational, orally, or 
intravenously, the relative position of the radiotracer is 
detected in the patient’s body. Based on this, we can ob-
tain many functional and physiological data. Because of 
this property, PET is effective in following conditions to 
guide the appropriate site of biopsy to prevent sampling 
error with under grading of tumors with heterogeneous 
histologic characteristics or to demonstrate regions of 
interictal hypometabolism associated with epileptogen-
ic foci. PET may one day guide functional neurosurgery 
with areas under development including the develop-
ment of specific receptors targeted radiotracers. How-
ever, the shortcomings of PET are poor signal-to-noise 
ratio (SNR), poor temporal resolution, and moderate 
spatial resolution [2-4].

Brain mapping modalities, such as observational map-
ping (PET, MEG, or fMRI), inhibition mapping (TMS), or 
advanced structural mapping (DTI) are rapidly evolving 
and have an extensive clinical role in the neurosurgi-
cal planning phase. With the combination of different 
functional mapping methods, we can achieve optimal 
results. To detect and not miss an eloquent brain area 
every time, we use these methods for surgical planning, 
it is essential to consider sensitivity and specificity [2-4].

To prevent postoperative neurosurgical deficits in op-
erations adjacent to or within the eloquent brain re-
gions, presurgical functional neuroimaging of the brain 
is necessary. For this purpose, different techniques 
include fMRI, PET, and diffusion-weighted imaging 
(DWI) [5, 6]. These techniques are useful to clarify the 
risk and plan of operation [7-9]. The disadvantages of 
these techniques are as follows. The first disadvantage 
is the use of neuronavigation systems to match preop-
erative functional imaging data to the intraoperative 
site but the degree of precise image fusion after crani-
otomy is unclear due to brain shifting. With this brain 
shift, target registration errors up to 5 mm may occur 
[10, 11]. Another disadvantage of these techniques is 
limited spatial resolution. To overcome these shortcom-
ings, we can use a functional imaging technique called 
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Intraoperative Optical Imaging (IOI). In IOI, by obtain-
ing and evaluating camera images from the bare brain 
surface, the neurosurgeon can detect changes in the 
cortical optical characteristics. IOI has a high temporal 
and spatial resolution. Based on the data of IOI, we can 
show metabolic changes, followed by cortical organiza-
tion [12-14] and neuronal interconnectivity [15-17]. In 
brain mapping, IOI has been broadly used to observe, 
recognize, and map somatosensory areas and the visual 
cortex [18-23], and to clarify seizure focus [24, 25] and 
brain tumors [26, 27]. The use of IOI to decide for tumor 
removal based on language-related observations is still 
not conclusively clarified [28-34].

Brain mapping techniques

There are different techniques for brain mapping and 
we will describe some of these techniques.

Functional MRI (fMRI)

fMRI is the most commonly employed functional map-
ping technique for operative planning. It works based 
on the measurement of changes in oxygenated and de-
oxygenated hemoglobin and thus blood flow as a sur-
rogate for neural activity. It is a non-invasive mapping 
technique and is deployable on many clinical MRI scan-
ners. fMRI physiologic data can be taken with and co-
registered to corresponding structural images. Because 
of the safety and relative ease of fMRI, we can use it 
to plan optimal surgical strategy, guide the decision for 
surgery, and consider the risk of operation [35-39]. The 
shortcomings of fMRI are as follows:

Technical difficulties

• fMRI works based on the changes in cerebral blood 
flow using Blood Oxygen Level-Dependent (BOLD) con-
trast on T2* weighted images and does not directly 
assess neuronal activation. For this reason, an intact 
auto-regulatory response is required to correct signal 
interpretation. Any disruption in neural hemodynamic 
coupling by any pathologic processes can change the 
concordance between neuronal activity and cerebral 
blood flow and can distort the BOLD signal interpreta-
tion, such as the signal disruption by the mass effect of 
a lesion. 

• No accepted standard procedure exists to acquire 
and analyze fMRI and behavioral paradigms. 

• To interpret data, different statistical approaches and 
diverse statistical analyses of the data are available. 

• fMRI shows the topography of the functional cortical 
areas without any data about the white matter connec-
tions [40].

• Vein effect-larger draining cerebral veins-induced 
susceptibilities can distort the BOLD signal interpreta-
tion. This phenomenon can significantly decrease the 
precision of spatial localization [41]. To cancel this phe-
nomenon, the spin echo (SE) sequence is recommended 
[42]. However, the SE sequence has some limitations, 
as it first requires prolonged scanning acquisition times 
due to the less sensitivity to magnetic susceptibility ef-
fects (the basis of the BOLD signal), and the second, 
covers smaller areas.

• Head movements-data quality is severely degraded 
with any head movement during fMRI. These head 
movements during fMRI have two effects, one is to add 
“false” activation and second is to decrease or obscure 
“real” activation. Signal artifacts of motion are higher 
in paretic patients than in nonparetic patients. If the 
displacement is more than 2 mm, repeating fMRI is 
indicated to better capture the motion of parameters. 
Otherwise, then the data is not interpretable [43, 44].

• Susceptibility artifacts-susceptibility artifacts can oc-
cur at the border of air and tissue interfaces, such as in 
the middle fossa (in the proximity of mastoid air cells) 
and in the orbitofrontal cortex (in the proximity to nose 
and air sinuses) [45] and then in post-operative cases 
due to the presence of surgical clips, titanium plates, 
metal dust from a skull drill, or prior blood products. 
These susceptibility artifacts cause geometric distor-
tions and signal intensity reduction. Thus it should be 
cautious in interpreting fMRI data in postsurgical pa-
tients. The habitual way of overlaying functional brain 
maps on T1W images causes the artifacts to no longer 
be discernible [45].

• Higher incidence of neurological deficits- If surgical 
resection of a brain lesion is performed in 0.5 to 2 cm 
of the eloquent cortex and fMRI alone is used as a map-
ping technique, the likelihood of neurological deficit 
is higher in contrast to the usage of DCS. Therefore, if 
there is a spatial distance of 2 cm or less between the le-
sion and the functional cortex, the intraoperative DCS is 
preferred for mapping of the functional cortex [46-49].

Magnetoencephalography (MEG)

Neuronal activities have been associated with local 
magnetic fields. The basis of MEG is to measure changes 
in these local magnetic fields and based on these mea-
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surements, noninvasive mapping of brain activity is per-
formed. MEG is mostly applied for preoperative evalu-
ation of epileptic patients. The disadvantages of MEG 
are [50]:

• Very expensive technique- MEG scanners and the 
shielded room are very expensive and need dedicated 
personnel

• High sensitivity to the surrounding magnetic fields, 
even the magnetic field of the earth itself

• Low spatial resolution and signal source localization 
[50] 

• Difficult interpretation [51]

Positron emission tomography (PET)

PET provides functional and physiological information 
based on the detection of the position of radiotracer 
compounds in the patient’s body. Because of this prop-
erty, PET is effective in the following conditions: To guide 
the biopsies from suitable locations or to demonstrate 
areas of inter-ictal hypo-metabolism associated with 
epileptogenic foci. PET has the followings shortcomings:

• Low spatial and temporal resolution 

• Relatively invasive technique-To perform PET, we 
have to use radioactively labeled tracers and for this 
reason, it is prohibited in some cases, such as children. 

• Very expensive-PET imaging needs very expensive 
equipment of PET scanners and requires dedicated per-
sonnel and a cyclotron to generate radioactively labeled 
tracers. 

• Susceptibility to signal distortion-PET is a hemody-
namically based imaging study like fMRI and thus is sus-
ceptible to signal contortions from uncoupling issues. 

• Low differentiation ability-PET cannot differentiate 
functionally essential areas from functionally support-
ive areas for task performance [40].

Diffusion tensor imaging (DTI)

• DTI is an advanced structural mapping technique 
and not a functional study. DTI data can clarify the lo-
cation and trajectory of white matter tracts, and based 
on these data may help interpret functional brain ar-
eas. DTI is the only method that can show white matter 
tracts. DTI has the following technical limitations:

• Obscure visualization-Because of the 3D tractogra-
phy implantation over all brain, a large mass of fibers is 
created which makes a faint visualization. Seeding from 
specific anatomical or functional landmarks aids in the 
selective visualization of tracts. One shortcoming of DTI 
is for tracts that are in proximity to a brain lesion. For 
these tracts, DTI has difficulty in differentiation between 
tracts that are inside the lesion and those that are be-
yond the lesion [52]. Fractional anisotropy of white mat-
ter is important in DTI and any factor which decreases 
the anisotropy, such as tumor infiltration or edema, dis-
torts the presence of preserved tracts. 

• DTI does not provide any information about the in-
teractions between white bundle tracts and functional 
cortical regions. 

• DTI does not recognize eloquent structures in the 
mapped white bundle tracts and cannot detect tracts 
that are obligatory for task execution.

Brain shifting 

The most critical limitation of the use of preoperative 
brain mapping techniques is brain shifting. Brain shifting 
occurs following the dural opening, surgical manipula-
tion, CSF drainage, edema, and effects of gravity and po-
sitioning. Brain shifting causes an anatomical disparity 
between the preoperative and the operative field im-
ages. With the progression of the surgery, this displace-
ment increases, and after an hour of dural opening, an 
anatomical displacement greater than 10 mm can occur 
[53-58]. The solution for these shortcoming effects of 
brain shifting is intra-operative imaging and compar-
ing them to the pre-operative functional images [40]. If 
available, intra-operative MRI will provide a significant 
advantage. However, fMRI is unlikely to be possible due 
to the degree of time and patient cooperation needed 
for fMRI [59, 60]. Intraoperative DTI can acquire and 
show displacements of about 1-1.5 cm [61].

Intra-operative mapping and imaging

To prevent postoperative neurological deficits in pa-
tients undergoing neurosurgical operations in the vicin-
ity of or within the eloquent brain regions, preoperative 
functional neuroimaging of the brain is required [7-9]. 
Two major drawbacks of these methods are first, as 
mentioned above, brain shifting occurrence following 
craniotomy and dural opening with target registration 
errors up to 5 mm [10, 11], and secondly, most of the 
mentioned techniques have limited spatial resolution. 
To remove these drawbacks, we need intraoperative 
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mapping and imaging. Intraoperative Optical Imaging 
(IOI) is a functional imaging technique and can over-
come these drawbacks. By acquiring and evaluating 
camera images (with high temporal and spatial reso-
lution) from the bare brain surface, the surgeon can 
observe changes in cortical optical properties. In IOI 
based on the inspection of metabolic changes, we can 
investigate cortical organization [21, 31, 41] and neuro-
nal connectivity [41, 51, 59]. IOI is broadly used in the 
followings:

• For the visualization, recognition, and mapping of so-
matosensory areas [12, 20, 22, 42, 62] and visual cortex 
[32]

• To identify seizure focus [42, 50] and brain tumors 
[51, 60].

The use of IOI for decision-making during tumor re-
moval is still not conclusively clarified, especially com-
pared to fMRI and DCS [30, 52, 63]. In contrast to the 
electrode strips, IOI functional maps have high spatial 
resolution and can be easily semi-transparently visual-
ized over the actual intra-operative field. In contrast to 
preoperative fMRI which needs registration accuracy, it 
is negligible for IOI shifting of the brain and the resultant 
loss of registration accuracy of the neuro-navigation sys-
tem.

Appropriate pre-surgical mapping with suitable para-
digm

For appropriate preoperative brain mapping, an ap-
propriate paradigm must be selected and the followings 
are important for this selection:

• Clinical status of the patient [64]

• Position of the lesion

• Designed trajectory

• Functional structure of the cortex that participates in 
voluntary motor movements includes the primary mo-
tor cortex, the supplementary motor area, the primary 
somatosensory cortex, and the premotor area. In the 
primary motor and primary somatosensory cortex, a 
topographic map of each body region exists, such as the 
hand at the upper portion, the leg at the medial portion, 
and the tongue at the lateral portion. Therefore, by tap-
ping the finger, the upper portion of the motor cortex is 
activated, and by wiggling the toe, the medial portion 
is activated and by moving the tongue, the lateral por-

tion is activated, respectively and these are appropriate 
paradigm for preoperative motor mapping [65, 68]. 

• Reciprocal neural interconnectivity between the 
precentral and postcentral gyri due to this sensory para-
digm that are more likely to favor the postcentral gyri 
can also activate the motor cortex [69-71].

Appropriate preoperative motor mapping techniques

• fMRI: As described above

• Functional connectivity Magnetic Resonance Imag-
ing (fcMRI): fcMRI is a task-free technique that recog-
nizes spontaneous synchronized changes in brain activa-
tion [72-74]. The advantages of this technique are first 
that in a short time (single 20 minute scanning session), 
we can evaluate multiple brain functions, and the sec-
ond, the patients’ compliance is not important (fcMRI 
is doable in cases under general anesthesia and even in 
human infants) [75].

• TMS: Disadvantages of TMS include low spatial reso-
lution and can increase seizure risk in epileptic cases. 
TMS is the only non-invasive mapping technique that 
works based on direct brain stimulation or inhibition. 
With the incorporation of TMS into a frameless stereo-
tactic navigational system, a correlation within 5 mm is 
observed between TMS and DCS [76] and in another 
study, a correlation within 1 cm is observed between 
TMS and DCS technique [77].

• DTI: DTI can be used as a preoperative mapping tech-
nique for the patient’s motor system. Based on the DTI 
information, corticospinal tracts can be demonstrated, 
enabling the neurosurgeon to preserve displaced white 
bundle tracts. Based on the DTI information in low-
grade gliomas, the neurosurgeon can detect and pre-
serve functional white bundle tracts within the tumor 
lesion during tumor operation [78]. To illustrate motor 
cortical regions with associated descending tracts, we 
can combine DTI with fMRI [79-82].

Mapping of language

Localization of language regions and clarification of 
the dominant hemisphere or bilateral support for the 
language is called language mapping. For language 
mapping, we can use the following techniques:

• IAT: This technique is the gold standard to determine 
language and memory dominance. IAT has some signifi-
cant complications [83]. In some patients due to cross-
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flow of amobarbital in IAT to another hemisphere, it is 
difficult to definitively determine language dominance 
due to altered cerebrovascular flow [84]. 

• fMRI: Functional MRI has a concordance rate of 
about 90%-100% with IAT [85-91]. The reliability of fMRI 
for lateralization of language is similar to that of the IAT 
[92-94]. 

• DTI: To further clarify the anatomic and physiologic 
causes of asymmetrical language lateralization, we can 
combine fMRI with DTI. Based on this combination that 
is done in some studies, the structural asymmetry of 
white matter tracts in arcuate fasciculus can cause lan-
guage lateralization. This asymmetry can be measured 
by DTI [95, 96].

• MEG: To map and lateralize the functional cortex for 
language reception, we can use MEG. MEG enables the 
neurosurgeon to tract the temporal course of language 
activation. The concordance rate between MEG and IAT is 
about 88%-93% [97, 98]. We can replace IAT with MEG be-
cause MEG has enough reliability to replace IAT [99, 100].

Localization of language

So far, there is no single standardized robust clinical 
fMRI language battery and no universal paradigm for 
planning the surgical removal of brain lesions near Bro-
ca’s or Wernicke’s areas. There are different paradigms 
for language mapping and localization, such as picture 
naming, etc. [100-105]. Following difficulties are pres-
ent for language localization:

• Functional heterogeneity of peri-Sylvian language 
regions

• Brain lesions adjacent to the language cortex can 
cause possible lesion-induced plasticity, false negatives 
associated with edema or mass effect, or low perfor-
mance due to language impairments. 

• In fMRI, a relationship exists between the language-
associated region of activation and the selected statisti-
cal threshold, as the statistical threshold decreases, the 
area of activation increases, and vice-versa. 

• A relation is observed between the degree of activa-
tion and the baseline task. With a resting baseline task, 
more extensive activations will be seen whereas, with 
an increased level baseline task, a lower level of acti-
vation pattern is likely to be seen. For this purpose, an 
appropriate selection of active and control tasks in us-

ing fMRI as a language mapping technique is essential 
and needs great care and attention. Therefore, the vali-
dation of fMRI against DCS for language mapping has 
a lower sensitivity and specificity than motor-sensory 
brain mapping [100-105].

Considering brain mapping in specific diseases:

Gliomas

Gliomas warp normal brain anatomy and make patho-
logical changes in brain vasculature. High-grade gliomas 
(HGG) distort the biochemical environment in the brain 
and induce neovascularization [106, 107]. Due to the 
reduction of perivascular cells, these newly formed vas-
culatures are not normal; they are weak, disorganized, 
and immature. Hence, this immature vasculature cause 
focal hemorrhage and fluid transudation leak and in-
crease the oxygen availability to activated neural cells 
[108-111] thereby decreasing normal oxygen extraction 
levels of activated neural regions. Therefore, due to the 
two following changes, the formation of the blood-ox-
ygen-level-dependent (BOLD) signal is decreased and 
BOLD signal distortion occurs; first, due to decreased 
normal oxygen extraction level of activated neural re-
gions, a lower concentration of deoxyhemoglobin with 
resultant uncoupling effect exists and second, the mass 
effect of the rapidly growing tumor exists with the com-
pression of surrounding vasculature. Due to this uncou-
pling phenomenon, the reliability of fMRI in High-Grade 
Gliomas (HGG) is prominently decreased and can be in-
correctly interpreted as brain plasticity [112].

Brain mapping is particularly helpful for Low-Grade 
Gliomas (LGG). Due to the functional adaptation and 
cortical topographic reorganization that occurs in LGG 
with slow-growing character of this tumor, interpreta-
tion of unusual activation configurations is complex 
[113]. Two mapping techniques may be particularly 
helpful in LGG, including MEG in patients with LGG and 
refractory seizures by allowing both brain mapping and 
a seizure onset localization and DTI in patients with LGG 
with preserved tracts within the lesion. DTI can differ-
entiate infiltration from displacement or destruction of 
tracts by the tumor. The lack of tract visualization can 
occur with tumor infiltration or edema [113].

Vascular malformations

fMRI is a reliable brain mapping tool in brain vascular 
malformations. The results of fMRI resemble intraop-
erative brain mapping techniques [114, 115]. For preop-
erative planning of surgical resection of cavernous hem-
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angiomas, functional mapping is effective [79, 116]. In 
arteriovenous malformation (AVM), searching for the 
functional integrity of surrounding brain territories of 
AVM with fMRI has some limitations. The blood pres-
sure in the arterial portion of the AVM is low and in the 
venous portion is high, therefore the feeding pressure 
of the artery is relatively lower than normal and the 
draining pressure of the draining vein is higher. Hence, 
brain territories surrounding AVMs have low cerebral 
perfusion pressure and disruption of the BOLD signal, 
resulting in the obscuration of activation in function-
ally active brain areas. Therefore, fMRI may incorrectly 
show functionally active brain areas as inactive. To mini-
mize the risk of AVM operation and resection based on 
the fMRI, AVM is subcategorized, based on the distance 
between the AVM and the functional cortex as defined 
by fMRI [29]:

1. Low-risk group: functionally active brain regions are 
separated by at least one complete gyrus from AVM. 

2. High-risk group: functionally active brain regions are 
profoundly associated with AVM. 

3. Indeterminate risk group: functionally active brain 
regions and AVM are bordering each other. 

4. In planning the resection of AVM in the low-risk 
group, the fMRI may be used alone. The second group is 
generally considered inoperable and is usually referred 
for radiotherapy. For the third group, direct electrocor-
tical stimulation is performed (spatial distance of less 
than 1 cm between AVM and eloquent cortex) [29].

Epilepsy

The target of operation in epilepsy surgery is usually 
a region of brain tissue rather than a tumor or others, 
for this reason, preoperative functional brain mapping 
is essential. In epilepsy surgery, brain mapping can be 
used to select pre-surgical cases and procedure plan-
ning. To assess memory dominance and risk of postsur-
gical memory loss in temporal lobectomy and amygda-
lohippocampectomy, IAT and fMRI, including fcMRI can 
be used [117, 118]. We can use the IAT, fMRI, and MEG 
to lateralize and localize language. In cases with tempo-
ral lobe epilepsies compared to healthy subjects, more 
bilateral language activation exist in association with a 
higher incidence of activation in the homologous lan-
guage areas of the contralateral hemisphere [119]. In 
the evaluation of epilepsy cases, it is essential to local-
ize the seizure focus. For this localization, the following 
techniques can be used:

• MEG: MEG can help us to localize seizure focus by 
localizing interictal discharges. Although the correlation 
is still not perfect [120]. 

• Fluorodeoxyglucose (FDG): PET and Single-Photon 
Emission Computerized Tomography (SPECT)- FDG-PET 
can localize seizure focus by analyzing interictal metabo-
lism and FDG-SPECT by analyzing ictal-interictal metab-
olism differences [121, 122]. 

• fMRI: fMRI can help us localize seizure focus. In cases 
with frequent interictal discharges, the combination of 
fMRI with EEG can localize the seizure focus. To later-
alize medial temporal lobe epilepsies, we can do spike-
triggered fMRI and by adding the spatial resolution of 
the MRI to the temporal resolution of EEG, we can local-
ize seizure focus [123, 124].

5. Conclusion

Nowadays, numerous brain mapping techniques are 
available for neurosurgeons. With the combination of 
functional and anatomical results of these techniques, 
we can select appropriate patient and surgical planning. 
Currently, brain mapping techniques are more accessi-
ble and still evolving. All stages in obtaining a functional 
image are difficult and need knowledge of the underly-
ing physiologic and imaging characteristics, and what is 
particularly important is the experience and knowledge 
of neurosurgeons to interpret these highly processed 
data of functional imaging techniques.
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