Volume 3, Issue 1 (6-2017)                   Iran J Neurosurg 2017, 3(1): 27-30 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashouf M, Kiaee M, Bidabadi E. Topography of Sylvian Fissure and Central Sulcus as Neurosurgical Landmarks: an Anatomical Study Using Cadaveric Specimens in Iran. Iran J Neurosurg 2017; 3 (1) :27-30
URL: http://irjns.org/article-1-68-en.html
1- International Fellow of the American Association of Neurological Surgeons (IFAANS), Rasht Arya Hospital, Guilan, Iran
2- General Practitioner, Researcher, Guilan University of Medical Sciences, Rasht, Iran , kiaee.mary@gmail.com
3- Associate Professor of Child Neurology, Guilan University of Medical Sciences, Rasht, Iran
Abstract:   (7102 Views)

Background and Aim: In the present study, the cerebral surface landmarks in human fresh autopsy specimens were investigated.

Methods and Materials/Patients: Totally, 37 fresh adult autopsy human brain specimens from the Rasht Forensic Medicine Center were enrolled. Four specimens were excluded because of some traumatic injuries to cerebral cortex. Demographic information of all cases was obtained. Length of bilateral central sulcuses and posterior ramous of Sylvian fissures, thickness of superior, middle, and inferior gyri of temporal lobes, as well as the distance from frontal poles to midpoint of central sulcuses were measured and analyzed using SPSS software.

Results: In total, 25 male (75.8%) and 8 female (24.2%) specimens were included. Mean (range) length of posterior ramus of right and left Sylvian fissure were 75.61 (50-95) and 74.55 (49-100) millimeter, respectively. Mean (range) length of right and left central sulcus were 94.85 (75-115) and 97.24 (65-125) millimeter, respectively. Mean (range) thickness of right and left superior temporal gyrus were 16.66 (520) and 15.33 (7-25) millimeter, respectively. Mean (range) thickness of right and left middle temporal gyrus were 16.63 (5-25) and 16.42 (8-25) millimeter, respectively. Mean (range) thickness of right and left inferior temporal gyrus were 10.30 (5-20) and 10.70 (5-22) millimeter, respectively. Mean (range) distance from right and left frontal pole to midpoint of right and left central sulcuse were 81.27 (55-105) and 82.63 (60-105) millimeter, respectively. There were no statistically significant differences between two hemisphere measurements.

Conclusion: It can be said that the two hemispheres are similar in cerebral surface landmarks.
 

Full Text [PDF 647 kb]   (3474 Downloads) |   |   Full Text (HTML)  (2362 Views)  
Type of Study: Research |

References
1. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three dimensional digitizer (neuronavigator): New equipment for computed tomography-guided stereotatic surgery. Surg Neurol. 1987; 6:543–547. [DOI:10.1016/0090-3019(87)90152-2]
2. Sure U, Alberti O, Petermeyer M, Becker R, Bertalanffy H. Advanced image guided skull base surgery. Surg Neurol. 2000; 53:563–572. [DOI:10.1016/S0090-3019(00)00243-3]
3. Dorward NL, Alberti O, Palmer JD, Kitchen ND, Thomas DT. Accuracy of true frameless stereotaxy: In vivo measurement and laboratory phantom studies. J Neurosurg. 1999; 90:160–168. [DOI:10.3171/jns.1999.90.1.0160] [PMID]
4. Roberts DW, Hartov A, Kennedy FE, Miga MI, Aulsen KD. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 1998; 43:749–760. [DOI:10.1097/00006123-199810000-00010] [PMID]
5. Katada K. MR imaging of brain surface structures: surface anatomy scanning (SAS). Neuroradiology. 1990; 32(5):439-446. [DOI:10.1007/BF00588477] [PMID]
6. Gong X, Fang M, Wang J, Sun J, Zhang X, Kwong WH, et al. Three-dimensional reconstruction of brain surface anatomy based on magnetic resonance imaging diffusion-weighted imaging: A new approach. Journal of Biomedical Science. 2004; 11(6):711-716. [DOI:10.1007/BF02254354] [PMID]
7. Imai F, Ogura Y, Kiya N, Zhou J, Ninomiya T, Katada K, et al. Synthesized surface anatomy scanning (SSAS) for surgical planning of brain metastasis at the sensorimotor region: Initial experience with 5 patients. Acta Neurochirurgica. 1996; 138(3):290-293. [DOI:10.1007/BF01411739] [PMID]
8. Zhu XD. The application of MR br ain sur face anatomy scanning in the oper ation of intr acr anial par asagittal meningiomas. Acta Chir Belg. 2008; 108(4): 420-3. [DOI:10.1080/00015458.2008.11680253] [PMID]
9. Gusmao S, Ribas GC, Silveira RL, Tazinaffo U. [The sulci and gyri localization of the brain superolateral surface in computed tomography and magnetic resonance imaging]. Arq Neuropsiquiatr. 2001; 59(1): 65-70. https://doi.org/10.1590/S0004-282X2001000100014 https://doi.org/10.1590/S0004-282X2001000100013 [DOI:10.1590/S0004-282X2001000100029] [PMID]
10. Miyagi Y, Shima F, Ishido K, Araki T, Kamikaseda K. Inferior Temporal Sulcus as a Site of Corticotomy: Magnetic Resonance Imaging Analysis of Individual Sulcus Patterns. Neurosurgery. 2001; 49:1394–1398. [DOI:10.1097/00006123-200112000-00017] [PMID]
11. Ebeling U, Steinmetz H, Huang Y, Kahn T. Topography and identification of the inferior precentral sulcus in MR imaging. Am J Neuroradiol. 1989; 10:101–107. [DOI:10.2214/ajr.153.5.1051]
12. Naidich TP, Brightbill TC. Systems for localizing fronto-parietal gyri and sulci on axial CT and MRI. Int J Neuroradiol. 1996; 2:313–338.
13. Naidich TP, Valavanis AG, Kubik S. Anatomic relationships along the low-middle convexity: Part I—Normal specimen and magnetic resonance imaging. Neurosurgery. 1995; 36:517–532. https://doi.org/10.1227/00006123-199503000-00011 [DOI:10.1097/00006123-199503000-00011] [PMID]
14. Naidich TP, Valavanis AG, Kubik S, Taber KH, Yasargil MG. Anatomic relationships along the low-middle convexity: Part II—Lesion localization. Int J Neuroradiol. 1997; 3:393–409.
15. Fernandez YB, Borges G, Ramina R, Carelli EF. Double-checked preoperative localization of brain lesions. Arq Neuropsiquiatr. 2003; 61:552–554. [DOI:10.1590/S0004-282X2003000400005]
16. Hinck VC, Clifton GL. A precise technique for craniotomy localization using computerized tomography. J Neurosurg. 1981; 54:416–418. [DOI:10.3171/jns.1981.54.3.0416] [PMID]
17. King JS, Walker J. Precise preoperative localization of intracranial mass lesions. Neurosurgery. 1980; 6:160–163. https://doi.org/10.1097/00006123-198002000-00008 [DOI:10.1227/00006123-198002000-00008]
18. Krol G, Galicich J, Arbit E, Sze G, Amster J. Preoperative localization of intracranial lesions on MR. Am J Neuroradiol. 1988; 9:513–516. [PMID]
19. Penning L. CT localization of a convexity brain tumor on the scalp. J Neurosurg. 1987; 66:474–476. [DOI:10.3171/jns.1987.66.3.0474] [PMID]
20. Kendir S, Ibrahim Acar H, Comert A, Ozdemir M, Kahilogullari G, Elhan A, Caglar Ugur H. Window anatomy for neurosurgical approaches. Laboratory investigation. J Neurosurg. 2009; 111(2): 365-70. [DOI:10.3171/2008.10.JNS08159] [PMID]
21. Yasargil MG, Cravens GF, Roth P. Surgical approaches to "inaccessible" brain tumors. Clin Neurosurg. 1988; 34:42–110. [PMID]
22. Yasargil MG, Kasdaglis K, Jain KK, Weber HP. Anatomical observations of the subarachnoid cisterns of the brain during surgery. J Neurosurg. 1976; 44:298-302. [DOI:10.3171/jns.1976.44.3.0298] [PMID]
23. Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ. Surgical anatomy of microsurgical sulcal key points. Neurosurgery. 2006; 59[Suppl 4]: 177–211.
24. Vannier MW, Brunsden BS, Hildebolt CF, Falk D, Cheverud JM, Figiel GS, et al. Brain surface cortical sulcal lengths: quantification with three-dimensional MR imaging. Radiology. 1991; 180(2): 479-84. [DOI:10.1148/radiology.180.2.2068316] [PMID]
25. Ebeling U, Rikli D, Huber P, Reulen HJ. The coronal suture, a useful landmark in neurosurgery? Craniocerebral topography between bony landmarks on the skull and the brain. Acta Neurochir (Wien). 1987; 89:130–134. [DOI:10.1007/BF01560378]
26. Rhoton AL Jr. Cranial anatomy and surgical approaches. Neurosurgery. 2003; 53:1–746.
27. Uematsu S, Lesser R, Fisher RS, Gordon B, Hara K, Krauss GL, et al. Motor and sensory cortex in humans: Topography studied with chronic subdural stimulation. Neurosurgery. 1992; 31:59–72. https://doi.org/10.1227/00006123-199207000-00009 [DOI:10.1097/00006123-199207000-00009] [PMID]
28. Brown WD. Brain: supratentorial cortical anatomy. Neuroimaging Clin N Am. 1998; 8(1): 21-36. [PMID]
29. Tamura M, Ohye C, Nakazato Y. Pathological anatomy of autopsy brain with malignant glioma. Neurol Med Chir (Tokyo). 1993; 33(2): 77-80. [DOI:10.2176/nmc.33.77]
30. Harkey HL, al-Mefty O, Haines DE, Smith RR. The surgical anatomy of the cerebral sulci. Neurosurgery. 1989 May; 24(5):651-4. https://doi.org/10.1097/00006123-198905000-00001 [DOI:10.1227/00006123-198905000-00001] [PMID]
31. Wen HT, Rhoton AL, de Oliveira E, Cardoso ACC, Tedeschi H, Baccanelli M, et al. Microsurgical anatomy of the temporal lobe: Part 1: Mesial temporal lobe anatomy and its vascular relationships as applied to amygdalohippocampectomy. Neurosurgery. 1999 September; 45(3):549. [DOI:10.1097/00006123-199909000-00028] [PMID]
32. Wen HT, Rhoton AL, de Oliveira E, Castro LHM, Figueiredo EG, Teixeira MJ. Microsurgical Anatomy of the Temporal Lobe: Part 2-Sylvian Fissure Region and Its Clinical Application. Neurosurgery. December 2009; 65(6):1-36 [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and Permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Neurosurgery

Designed & Developed by: Yektaweb